Soil-structure Interaction & Its Effects on Damped Structures

Background

- □ The effect of soil-structure interaction (SSI) on the response of structures is a heavily researched subject
- □ It is not clear how SSI affects the behaviour of buildings equipped with supplemental viscous dampers
- Experimental efforts on the subject have failed to consider ground flexibility and SSI

Fig.1 17-story steel structure in Taiwan equipped with 60 fluid viscous dampers (Taylor Devices India, 2016)

facility, Japan (Kasai et al. 2010)

Energy Dissipation in SSI

Total seismic input energy into the structure can be decomposed into:

$E_{I} = E_{k} + E_{s} + E_{h} + E_{d} + E_{fd}$

- □ Foundation soil damping and radiation damping due to inertial interaction of the structure with the supporting ground dissipates a component of the input energy
- Energy dissipation associated with SSI can reduce the energy transferred to the superstructure

Research Framework

- Investigating dynamic SSI in the centrifuge to quantify deviation of damped building response from fixed base assumption
- □ Three control parameters will be varied (1) soil stiffness (2) structure aspect ratio (3) structure-to-soil stiffness ratio

Kasai, K. et al., 2010. Full-scale shake table tests of 5-story steel building with various dampers. In 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering (5ICEE). Tokyo, pp. 11–22 • Taylor Devices India, 2016. Buddhist HQ Building. [Online] Available at: http://www.taylordevicesindia.com/

All technical staff at the Schofield Centre

Ministry of Education

الملحقية الثقافية السعودية في لندن Saudi Arabian Cultural Bureau in London

UNIVERSITY OF CAMBRIDGE

Jad Boksmati & Prof. Gopal Madabhushi