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Abstract: A large database has recently been published that details the development of new empirical expressions for the stiffness reduction
with strain of clays and silts. In this note, the same database is used to examine twomajor considerations for engineers using these expressions in
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Introduction

The estimation and measurement of soil modulus reduction with
increasing strain has been the subject of much research in geo-
technical engineering (e.g., Kondner 1963; Hardin and Drnevich
1972a, b; Vucetic and Dobry 1991; Fahey 1992; Fahey and Carter
1993; Stokoe et al. 1994, 1999; Hardin and Kalinski 2005; Gasparre
et al. 2007;Oztoprak andBolton 2013;WichtmannandTriantafyllidis
2013a, b). The importance of understanding small-strains for geo-
technical design has been discussed extensively in Burland (1989)
and Atkinson (2000).

Vardanega and Bolton (2013) have recently published a large
database that was used to derive simple empirical expressions for
modulus reduction for clays and silts. The substantive details of
the database formulation, the sources of data, and their subsequent
analysis will not be repeated here. Fig. 1 shows the Casagrande plot
(Casagrande 1947) for the soils in the database: a variety of fine-
grained soil types are represented.

Static and Dynamic Adjustments

The stiffness of fine-grained soils is well known to be rate-sensitive
(e.g., Richardson andWhitman 1963). Vardanega and Bolton (2013)
presented calibrated empirical expressions [based on the general form
adopted in Darendeli (2001)] demonstrating that rate-effect adjust-
ments are necessary when comparing data tested in different appa-
ratuses. The new curves were compared with those of Vucetic and
Dobry (1991), which do not explicitly account for rate effects, and
which are now seen to be too widely spaced.

The database presented in Vardanega and Bolton (2013) had the
original test data from 10 publications (67 tests) adjusted for rate
effects to two representative strain rates, namely 1026=s and 1022=s,
with the former attempting to simulate a standard triaxial test and the

latter simulating a standard earthquake. This adjustment was based
on the assumption of a stiffness variation of 5% per factor 10 on
strain rate, providing an indication of the increase in stiffness that is
implied when moving from 1026=s (static adjustment) to 1022=s
(dynamic adjustment) in these two design situations.

Calibrated Stiffness Reduction Functions

The newly calibrated functions to describe the modulus reduction of
clays and silts fromVardanega andBolton (2013), and the prediction
of the reference strain parameter (gref ) are as follows, for the data-
base with the static adjustment applied:

G
Gmax

¼ 1

1þ
�

g

gref

�0:74 (1a)

gref ¼ 2:2
�
Ip=1,000

�
(1b)

where Ip is expressed numerically and not as a percentage.
For the database with the dynamic adjustment applied

G
Gmax

¼ 1

1þ
�

g

gref

�0:94 (2a)

gref ¼ 3:7
�
Ip=1,000

�
(2b)

where, again, Ip is expressed numerically and not as a percentage.
In this note, the same database is used to examine two major

considerations for engineers using these expressions in numerical
analyses:
1. The transformation from secant to tangent stiffness; and
2. The effect of stress history.

Small Strain Region

The reduction of the shear stiffness of a soil with increasing strain
from its purely elastic maximum value Gmax is sketched in Fig. 2
for both monotonic and cyclic tests. Referring to Figs. 2 and 3, one
can say that Gmax 5Gsec 5Gtan in the linear elastic strain range and
that at greater strains onemay describe themodulus either as a secant
(Gsec) or a tangent (Gtan). The use ofGsec rather thanGtan is preferred
in the processing of test data because it is an order-of-magnitude
less influenced by random errors (noise). Nevertheless, Gtan is
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preferred in numerical procedures that require the assembly of an
incremental stiffness matrix.

Tangent Stiffness

If the tangent stiffness is desired for numerical analysis, then it can
easily be calculated from the secant stiffnesses that are quoted by
Vardanega andBolton (2013), which will consistently be referred to
here simply as G. Given that Eqs. (1a) and (2a) have the same form
[the form used in Darendeli (2001)], one can write

G
Gmax

¼ 1

1þ
�

g

gref

�a (3)

By definition

t ¼ Gg (4)

Differentiating Eq. (4) with respect to strain

Gtan ¼ dt
dg

¼ Gþ g
dG
dg

(5)

By differentiating Eq. (3)

Fig. 1. Casagrande plot of the soils in the database presented in Vardanega and Bolton (2013) (chart design adapted from Casagrande 1947;
Howard 1984; and BS5930 British Standards Institution 1999)

Fig. 2. Definitions of secant stiffness G, Gmax, and Gcyclic

Fig. 3. Definition of tangent stiffness Gtan
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dG
dg

¼ 2Gmax
a
g

�
g

gref

�a
1"

1þ
 

g

gref

!a#2 (6)

Substituting Eq. (6) in Eq. (5) and reorganizing, one obtains

Gtan

G
¼ 12 a��

gref
g

�a

þ 1

� (7)

From Eq. (7) it can be seen that when a5 0:74 (static adjustment)

g ¼ 0 Gtan ¼ Gmax ¼ G (8a)

g ¼ gref Gtan ¼ G½12 ða=2Þ� ¼ 0:63G (8b)

g ¼ 10gref Gtan ¼ Gf12 ½a=ð1þ 0:1aÞ�g ¼ 0:37G (8c)

FromEq. (7) it can be seen thatwhena5 0:94 (dynamic adjustment)

g ¼ 0 Gtan ¼ Gmax ¼ G (9a)

g ¼ gref Gtan ¼ G½12 ða=2Þ� ¼ 0:53G (9b)

g ¼ 10gref Gtan ¼ Gf12 ½a=ð1þ 0:1aÞ�g ¼ 0:16G (9c)

Larger values of a produce a faster diminution in G with strain
through Eq. (3), and even more so in Gtan through Eq. (7).

Consideration of Stress History

Database Variability

Table 1 presents the 67 tests that comprised the database presented in
Vardanega and Bolton (2013) on 21 clays and silts reclassified
according to their stress history. Twenty-four of the tests were on soils
that were able to be classified as normally or lightly overconsolidated
[overconsolidation ratios ðOCRÞ, � 2]. Twenty-six of the testswere
on soils that were able to be classified as heavily overconsolidated
(OCR. � 2). Seventeen of the tests could not be classified in either
category. [In the case of the data from Anderson and Richart (1976),
insufficient information was provided about the natural soil deposits.
In the case of the data from Kim and Novak (1981), there was ap-
parently no attempt to replicate in situ conditions for the tests studied.]

Table 2 shows that the difference between the average curva-
ture parameters for the three classifications is very small. This trend
holds both for the database with the static adjustment and with the
dynamic adjustment applied. Table 2 also demonstrates that the av-
erage value of the reference strain is not greatly different between
the normally and lightly overconsolidated category and the heavily
overconsolidated category. Vardanega and Bolton (2013), following
the work of Vucetic and Dobry (1991), showed that gref is a strong
function of plasticity index. The static and dynamic adjustments also
show that rate effects will have a significant effect on the reference
strain. However, it would now appear that there is no significant
influence of OCR on the reference strain. Fig. 4 shows Eq. (3) plotted
with the average value of astat for the whole database denoted as
astatðaverageÞ, which is also plotted in Eq. (3) with values of astat

61 SD, denoted as astatðplus 1 SDÞ and astatðminus 1 SDÞ, re-
spectively. Additionally plotted is Eq. (3) with the averageastat values
shown in Table 2 for the normal and lightly overconsolidated clas-
sified soils and the heavily overconsolidated soils, denoted as

astatðOCR , 2Þ and astatðOCR . 2Þ, respectively. The upper and
lower bounds of the normalized database presented in Vardanega and
Bolton (2013) are also shown.

The influence of OCR on the curvature parameter (a) does not
appear to be significant, simply from a visual inspection of Fig. 4.
Similar trends are found using the database when the dynamic ad-
justment is applied.

It might be noted that the values of the average curvature
parameters for the whole database are very similar to the average
a-values used in Eqs. (1a) and (2a), but they are not identical be-
cause the number of available data points varies between the in-
dividual test curves. The selection of the best-fit regression line to
determine the a-value ensures the maximum reduction of scatter.

Kinematic Yielding

The apparently marginal difference between lightly and heavily over-
consolidated clays, in regard to their normalized stress-strain curves,
deserves further comment. Fig. 5 is based on the kinematic yielding
model of Jardine (1992) andSmith et al. (1992).Normally consolidated
soil in situ can be represented by a point such asO in Fig. 5, standing on
some plastic yield surface labeled Y3. Outward-directed stress paths
would cause plastic hardening and would create positive excess pore
pressures in undrained tests. Inward-directed stress paths, such as those
involved in field sampling and core extrusion in the laboratory, would
initially involve linear and then nonlinear strains as theY2 yield surface
is dragged down toward the p9 axis. The location of theY3 yield surface
may, however, cause the unloading stress path to create some irre-
coverable hardening before the p9 axis is reached. The state of isotropic
stress at the outset of a standard triaxial compression test on a sample
core may therefore be some point such as A in Fig. 5, consistent with
a new Y3 yield surface marked disturbed on the diagram. The fine-
grained soils reported in the database as being normally consolidated
in situ will generally have been tested in shear after isotropic relaxation
to a point such asA. If the sample is isotropically overconsolidated from
A it will achieve some point B prior to the shear phase of the test, as
will clays which are naturally overconsolidated in situ.

An undrained triaxial compression test from either A or B will
initially involve the same process of kinematic yielding at constant p9
inside theY3 yield surface. This is represented by the draggingupwards
of the Y2 yield surface from points A or B, as shown in Fig. 5.
According to Jardine (1992), both stress paths should beginwith similar
stress-strain relations consistentwith akinematic hardening rule.Eq. (3)
can be regarded as an empirical expression of this proposition. If
a constitutive modeler wished to propose that kinematic hardening be
described by a unique expression, irrespective of stress history, then
single valueswould be required of exponenta in Eq. (3) and a constant
coefficient (i.e., the J-value) linking reference strain (gref ) and plasticity
index (Ip) in Eqs. (1b) and (2b) for the strain-rate of interest.

At larger strains the influence of OCR has been shown to be
significant (e.g., Vardanega et al. 2012). The findings of this note
pertain to the small strain region.

Summary Remarks

The following summary points are made based on the work de-
scribed in this note:
1. When performing numerical analysis the secant stiffness shear

strain functions can be easily converted to tangent stiffness
expressions: the curvature parameter (a) is directly linked to
the diminishing stiffness with increased strain, evenmore so in
tangent stiffness expressions.

2. Considering the fine-grained soils that could be classified as
either normally or lightly overconsolidated and comparing
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them with the more heavily overconsolidated soils, it has been
demonstrated that the normalized stress-strain curves of these
two categories of geological materials may be quite similar in
tests starting from a condition of isotropic effective stress. This
has been explained as being indicative of a kinematic hard-
ening function that is relatively insensitive to the initial mean
effective stress within the state boundary surface (the Y3 yield
surface), at least in the small-strain regionwhich is the focus of
this note. It must be remembered, of course, that the in situ
stress state will in general have an effective stress ratioK0 � 1,
and that geotechnical processes in the field will generally
involve more diverse stress paths than, for instance, simple
triaxial compression, copious data of which are uniquely
available in the literature. The influence of K0 and of stress-
path (in other words, the influence of anisotropy) on the shapes
of stress-strain curves lies outside the scope of this note.
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Notation

The following symbols are used in this paper:
G 5 secant shear stiffness (see also Gsec);

Gcyclic 5 secant shear stiffness measured in a cyclic test;
Gmax 5 shear stiffness at very small strains (sometimes

referred to as G0);
Gsec 5 secant shear stiffness (see also G);
Gtan 5 tangent shear stiffness;
Ip 5 plasticity index;
K0 5 coefficient of earth pressure at rest;
p9 5 mean effective stress;
q 5 deviator stress;

wL 5 liquid limit;
a 5 curvature parameter in the modified hyperbolic

equation;
adyn 5 curvature parameter obtained when the fitting

function is applied to data that had the dynamic
adjustment applied (described in Vardanega and
Bolton 2013);

astat 5 curvature parameter obtained when the fitting
function is applied to data that had the static
adjustment applied (described in Vardanega and
Bolton 2013);

g 5 shear strain;
gcyclic 5 shear strain amplitude measured in a cyclic test;
gref 5 reference strain equal to the shear strain at 0.5

Gmax;
gref,dyn 5 reference strain for a test (or series of tests) where

the data had the dynamic adjustment applied as
described in Vardanega and Bolton (2013) to account
for rate effects;

gref,stat 5 reference strain for a test (or series of tests) where
the data had the static adjustment applied as described
in Vardanega and Bolton (2013) to account for rate
effects; and

t 5 shear stress.T
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