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ABSTRACT: The degradation of shear modulus causes non-linearity before plastic yielding, and this needs to be
taken into account in deformation analyses for the performance-based design of geotechnical structures. In this
respect, this paper demonstrates the simulations of pressuremeter tests via a non-linear elastic perfectly plastic soil
model. A modified hyperbolic model was adopted for the pre-failure part of the stress-strain behaviour, and the Mohr
Coulomb soil model was implemented for modelling the post-failure behaviour in FLAC3D. Computed pressure-
displacement curves at the cavity wall matched very well with the curves of self boring pressuremeter tests carried out
in Thanet sand. A new pressuremeter disturbance correction is used successfully as a means of adjusting and updating
the shear modulus. The analysis reveals that this approach is essential for estimating the initial lateral earth pressure
coefficient, and is capable of refining the selection of new degradation parameters in the modified hyperbolic model
using pressuremeter rebound loops, and of refining values of friction and dilation angles from initial expansion and
final contraction curves. Using the modified hyperbolic model in conjunction with pressuremeter test data enables not
only calibration, but also optimization of parameters. The simulation of a pressuremeter test enables the engineer to
obtain an appropriate combination of soil parameters which can later be utilized to analyze geotechnical structures

through the same calibrated model.

1. INTRODUCTION

Deformations of sandy soils around typical geotechnical
structures display small to medium strain magnitudes
under static loading. In this strain range the soil exhibits
non-linear stress-strain behaviour which should be
incorporated in any deformation analysis. However,
there are some limitations on the incorporation of non-
linear elasticity into numerical models because of their
complexity and the requirement for special testing
procedures. Engineers in practice generally analyse with
sands prior to failure using a linear elastic soil model,
with a shear modulus that is assumed to be constant.
Furthermore, due to the great difficulty of recovering
undisturbed samples of sands, and the sophisticated
nature of the required tests, very few practising
engineers undertake the laboratory testing necessary to
validate the selection of any such constant stiffness
modulus. They often estimate the shear modulus from
SPT or CPT data, using weak empirical correlations.
Pressuremeter tests can offer much better reliability, but
it has not previously been easy to extract meaningful
soil parameters from the data. This paper aims to show a
practical methodology for doing so.

The degradation of shear modulus with strain has been
observed in soil dynamics since the 1970s and a great
deal of stiffness data for sands has been published for
the purpose of judging amplification factors and
liquefaction risk. The dependence of secant shear
modulus G on strain amplitude was illustrated for
dynamic loading by a number of researchers using the
resonant column test or improved triaxial tests (Seed
and Idriss, 1970; Hardin and Drnevich, 1972; Iwasaki et
al., 1978; Kokusho, 1980; Tatsuoka and Shibuya, 1991;
Yamashita and Suzuki, 1994). The same concept has
been applied to static behaviour from the mid 1980s
(Jardine et al., 1986, Atkinson and Salfors, 1991;
Simpson, 1992). The original relation for maximum
shear modulus G, proposed by Hardin and Richart
(1963) was modified for strain dependence in Eq. 1
which was formulated to be dimensionless:

G=A(y)-F(e)-p,-(p'1p. )" (1)

where A(%) and m(y) are strain dependent parameters, p,
is the atmospheric pressure, p”is mean effective stress,
and F(e) is a void ratio function which for round sands



was defined as (2.17-¢)*/(1+¢). Generally, m(7) is taken
0.5 for the G, calculation. On the other hand, to model
shear modulus reduction, most researchers suggested
different versions of hyperbolae, such as Ramberg and
Osgood (1943), Hardin and Drnevich (1972), Ishibashi,
and Zhang (1993), Fahey and Carter (1993), Darendeli,
(2001) and Yi (2010). Jardine et al (1986), however,
proposed a polynomial to fit their data.

Oztoprak and Bolton (2011) recently constructed a
database of shear modulus degradation curves from 454
tests in order to produce best-fit functional relationships
for shear stiffness of sandy soils. Obtaining a unique S-
shaped curve of shear modulus degradation, a modified
hyperbolic relationship was fitted to the data. The new
curve fitting parameters, elastic threshold strain (.) and
characteristic reference strain (j), were defined as
functions of soil type and stress level, promising a
practical way of incorporation into numerical methods.

This paper demonstrates the implementation of this
newly modified hyperbolic model for modelling
pressuremeter tests using FLAC3D finite difference
software. Its performance was tested on three self boring
pressuremeter tests in Thanet sand. The influence of soil
parameters, singly and in combination, is discussed.

2. STIFFNESS BASED SOIL MODELING

2.1 Modified hyperbolic model

A large amount of laboratory stiffness data for sandy
soils has been published since the 1970s to identify the
maximum shear modulus and the rate of shear modulus
reduction with shear strain in particular soils. With the
available stiffness data, Oztoprak and Bolton (2011)
refined the modified hyperbolic relationship of
Darendeli (2001) to create a unique S-shaped curve of
shear modulus degradation G/G, given in eq. (2):
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where 7., 7 and a are as defined in eqgs. (3) to (5):

7, (%) =0.01-U;"3 -(ij +0.08-¢-1, 3)
Pa

7. (%) = 0.0002 +0.012 - ¥, (%) )

a= UC—OAO75 (5)

Three curve-fitting parameters were used: elastic
threshold strain (.), reference strain () and curvature
parameter (a). Reference strain is the post-elastic shear
strain required to reduce G/G, to 0.5 and this was found
to depend on soil type (uniformity coefficient U.,), soil
state (voids ratio e and relative density /,) and on the
mean effective stress (p’). The elastic threshold strain
was found to be linked to the reference strain, and the
curvature parameter was found to be a function of the
uniformity coefficient. Before Oztoprak and Bolton
(2011), only Menq (2003) had made an attempt to
include U. into the formulation of G degradation.

With the elastic stiffness data, Oztoprak and Bolton
(2011) proposed a version of empirical relation for the
initial shear modulus, G,:

5760 A
G :_Pa.m

(+ef (p,

(6)

Here, the simpler voids ratio function 1/1+e)’
was preferred to that of Hardin and Richart (1963) since
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Figure 1. Evolution of shear stress-shear strain and normalized shear modulus-shear strain curves by using the modified

hyperbolic model for different soils and stresses
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Figure 2. Schematical representation of shear stress-shear
strain response of non-linear elastic perfectly plastic model
used for any element and mid-expansion phase in FLAC3D

it also reduced scatter. According to Oztoprak and
Bolton (2011), G, can be estimated within a factor of
1.6 for one standard deviation. Additionally, the new
empirical expression for shear modulus reduction G/G,
is shown to make predictions that are accurate within a

factor of 1.13 for one standard deviation of random error.

Fig. 1 demonstrates the performance of the modified
hyperbolic model. As noticed, the model has the
capability to evolve the normalized shear modulus

curves responsively when the soil type and stress change.

Note that a limiting ¢ value is separately invoked to
exclude unrealistically high large-strain values predicted
by (2), as with curve C4 beyond y = 0.4% in Fig. 1.

2.2 Incorporating the new model in FLAC3D

FLAC3D is based on a continuum finite difference
discretization using a Langrangian approach. It offers a
wide range of capabilities (e.g. large strains, anisotropy)
to solve complex problems in geomechanics. The
program offers a number of constitutive models for
geomaterials. These can be modified by the user through
a macro programming language (FISH) which is
embedded within FLAC3D. New constitutive models
can also be incorporated.

In this paper, it was preferred to modify the strain-
hardening/softening (SH) model to improve its
performance in the small strain range. The SH model
allows representation of nonlinear material softening
and hardening behaviour based on prescribed variations
of the Mohr-Coulomb (MC) model properties (cohesion,
friction, dilation, tensile strength) as functions of the
plastic shear strain which are not an output in the MC
model. To incorporate the modified hyperbolic model in
FLAC3D, a FISH function was written to represent the
reduction of shear modulus during straining up to
failure. Fig. 2a shows the stress-strain curve obtained by
using the modified hyperbolic model for the pre-failure
part and the perfectly plastic yield limit for the post-
failure part of the stress-strain behaviour in FLAC3D.
Fig. 2b exhibits the corresponding shear modulus-shear
strain relation of the model. The original shear stress-
strain and shear modulus-strain curves (curve ‘0°) of the
MC model can also be followed in Fig. 2.

The MC (also the SH) model is used for materials that
yield when subjected to shear loading; a shear yield
function and a non-associated shear flow rule are used.
In addition, the failure envelope for the model is
characterized by a tensile yield function with associated
flow rule. The yield stress (f;) depends on the major and
minor principal stresses (o; and o3 respectively) only;
the intermediate principal stress (o) has no effect on
yield. In the original MC model (also the SH model), the
stress-strain curve is linear to the point of yield (curve
‘0’ in Fig.2); in that range, the strain is elastic only:
y=»/. After yield, the total strain is composed of elastic
and plastic parts: ¥ = ¥ + #. The stress to cause shear
failure in the FLAC3D MC model is defined as

f¥=0,-0,N,+2c [N, (7)
where
N, =(1-sing)/(1+sing) (8)

Here; ¢ is cohesion, and ¢ is friction angle. Beyond peak
strength, soil plasticity was invoked, using Rowe’s
stress-dilatancy with constant friction angle (¢) and
dilation angle (). The plastic potential is given by

g’ =0, -o;N, )
where
N, = (1—siny)/(1+siny) (10)

The developed model can be defined as a modified
hyperbolic model using MC yield surface. The
procedure of the adopted model is given below:



i. A calculation step starts with a given G, as updated
by eq. (6); calculated incremental shear strain (ssi)
values are stored after the calculation for each zone.

ii. Corresponding shear modulus values are obtained
from the calculated modulus reduction curve
through a FISH function using the stored ssi values.
The function always uses the elastic part (ye) of the
ssi as the value of y to be used in eq. (2). It means
that ssi=ye before yielding and ssi=y.ty,
afterwards.

iii. Gridpoint displacements are updated with the new
incremental strains. The program proceeds to the
next loading stage.

3. PRESSUREMETER MODELING

3.1 Introduction

The pressuremeter has being widely used to measure
soil properties, especially stiffness and strength. Since
the 1970’s, both numerical and analytical solutions
based on different soil models have been proposed to
get shear strength and stress-strain characteristics from
pressuremeter tests. These solutions generally assume
conditions of radial symmetry and invoke the expansion
and contraction of a cylindrical cavity.

Hughes et al. (1977) and Manassero (1989) proposed
similar methods of determining the angle of effective
internal friction ¢ and the angle of dilatation i from
pressuremeter test data in sand. In adopting a more
rigorous approach, the authors assumed that sand
behaves as a dilatant elastic-plastic material. They took
constant friction and dilation angles ¢ and i relating
them to each other through the stress-dilatancy flow rule
of Rowe (1962), by introducing the constant volume
friction angle ¢.. Since both authors obtained these
values of ¢ from plane strain tests, they may be larger
than those obtained from conventional triaxial tests.

Fahey and Carter (1993) modelled pressuremeter tests
through an axisymmetric plane strain finite element
program using a non-linear elastic, Mohr-Coulomb soil
model. Their hyperbolic model takes stiffness
degradation into account but depends on empirical
fitting parameters. The authors demonstrate that no
single value of stiffness can realistically reproduce
pressuremeter behavior. It should equally be accepted
that a single average value of shear modulus taken from
the G, values measured on a rebound loop will be
inadequate to the task of modeling soil-structure
interaction problems.

In this paper, the closed form solution of Hughes et al.
(1977) has been used to obtain the strength parameters ¢
and y from a pressuremeter test. Fahey nd Carter
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Fig. 3. Field curves of SBP tests at Woolwich

(1993) then offer a useful starting point for the
simulation of a pressuremeter test using FLAC3D.

3.2 Modelling pressuremeter tests in FLAC3D

The measured pressure-volume (or radius) responses are
related to the shear stiffness and strength properties of
the soil. However, these properties are complicated by
varying stress and strain conditions around the
instrument. This causes difficulties in simulating the
whole stress-strain behaviour including unload-reload
loops. Fahey and Carter (1993) expended a lot of effort
attempting to simulate the expansion and contraction
phases of a pressuremeter test but they achieved success
only with unload-reload loops. However, they indicated
that their main aim, of calibrating the modified
hyperbolic model for use in the analysis of geotechnical
structures, was not compromised.

This paper follows Fahey and Carter (1993) using a
hyperbolic model with a Mohr-Coulomb yield surface to
model a pressuremeter test. However, this research used
FLAC3D software for the analysis. Furthermore, the
hyperbolic model was more sophisticated since it
responded to the soil type, soil state and mean effective
stress, enabling the evolution of shear modulus during
testing. To apply the model and verify its success, three
self-boring pressuremeter tests were selected each
including three loops.. The tests were performed by
Cambridge Insitu Ltd and were carried out in the Thanet
sand at Woolwich. The curves of pressure versus radial
displacement are given in Fig. 3.

Thanet sand is generally described as very dense, grey,
silty, quartzitic, fine sand which lies beneath the London
clay in central London. Its thickness is around 15 meters
(Ventouras, 2005). Since many piled foundations have
recently been founded in Thanet sand, a great deal of
data has now been collected. For example, Arup
Geotechnics (2000) carried out many field test including
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self boring pressuremeter tests and pile load tests at
Canary Warf. After analyzing their data, they divided
the Thanet sand into two sub-strata, the upper stratum of
low silt content and the lower stratum of high silt
content. Arup Geotechnics (2000) gives corrected SPT
Ngo values between 30 and 200, voids ratios between
0.65 and 0.95, and fines content between 5% and 30%.
Ventouras (2005) explored the engineering properties of
this sand from contact core and block samples taken
from these two strata and obtained similar index
properties. The grading curve envelopes show that the
Thanet Sand is mostly very homogenous in its grading
and is predominantly fine grained sand, with less than
25% fine material (silt or clay). The author indicated
that nature of the Thanet sand is indeed affected to a
significant extent by the finest content

The self boring pressuremeter (SBP) aims to minimise
soil disturbance. However, after insertion of the SBP
into the soil, the membrane may lose contact at some
points. Consequently, some initial outward radial
movement may be recorded by one of the three or six
strain-arms located around the instrument. Radial
inward movement of the soil can then occur if the in situ
total horizontal stress oy, is higher than the internal
pressure of the membrane at the beginning of the test.
The radial stress and soil stiffness may thereby decrease
due to the movement of the soil towards the SBP. When
the cavity pressure exceeds oj,, the cavity expands and
lift-off occurs. The lift-off pressure gives a rare
opportunity to estimate the lateral earth pressure
coefficient K, which is important for the subsequent
finite element analyses. According to Arup Geotechnics
(2000), Thanet sand has an overconsolidation ratio
changing from 4 to 8 which causes high values of K,,.

The stiffness decrease which was occurred during initial
expansion, may be recovered by a cycle of unloading
and reloading. Fig. 4 presents the modeling of a
pressuremeter test in FLAC3D. It is essential to define a
strain-arm compliance offset d to capture the initial
expansion curve. All observed displacements are
reduced by d and the lift-off pressure is redefined
accordingly. In the analysis d has varied between 0.1
and 0.9 mm, and sometimes it was necessary to reduce
the initial value of G, by a factor of 0.15 to 0.20.

As demonstrated in Fig. 4, at each reversal of loading,
the small-strain shear modulus G, is updated using eq.
(6) for the points 0 to 7. Updating G, only at reversal of
loading is similar to the approach applied by Fahey and
Carter (1993). The creep stage, which is applied just
before reversal of loading, permits static equilibrium to
be fully established. It was also needed to reset the shear
strain increment (ss7), following the reversal of loading
at points 1 to 7. For each pressure change (loading
stage), the secant shear modulus for each zone is then

calculated using egs. (2) to (5). All these calculations
are carried out by using two FISH functions.

One of the problems with implementing a nonlinear
elastic-plastic model is how to vary Poisson's ratio v (or
the bulk modulus K). Fahey and Carter (1993) indicate
that during plastic deformation total volumetric strains
are a combination of plastic dilational strains related to
plastic shear strain and elastic compression strains
related to changes in the mean stress. For Thanet sand it
was thought to be appropriate to take v between 0.25-
0.45 depending on the content of fines.

For the initial attempts for estimating ¢ and y, the
method of Hughes et al (1977) was used. The constant
volume friction angle was selected as 32° to 34°. For the
further estimates of ¢ and i to capture the field curve,
the empirical equation of Bolton (1986) was used:

¢'—0.8y =4, an

Fig. 5 shows the simulation of three selected SBP tests
at Woolwich (London). The curves given by the best fit
(optimized) parameters are compared with the field data.
The developed approach is very successful for capturing
all the pressuremeter tests. In particular, the modified
hyperbolic model has been able quite accurately to
reproduce the size and inclination of the loops. The
Mohr-Coulomb model came into play for the final
unloading phase, and also gave a good fit to the data.

To fully understand the effects on the load-displacement
curve of each of the parameters, and to reveal any
interchangeability of parameters, more analysis was
carried out on test B431-T2 and the results are given in
Fig. 6. When the figures are examined, the following
interpretations can be made:
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Fig. 4. Presentation of the modelling process in FLAC3D




e K, affected the whole curve, including the sizes of the
loops, but not their inclination. This important
parameter can successfully be estimated from the lift-
off pressure: (Figs. 6a and 6b).

The strain-arm compliance offset d led to improved
capture of the first expansion curve of the test. In
addition, a reduction was needed in G, (Figs. 6¢ and
6d). These calibrations appeared to give a good
representation of the installation effect of a SBP, and
may be able to do similarly for pre-bored
pressuremeter tests. Fig. 6d demonstrates that the first
loop effectively remediates any disturbance effect.

G, seems to be the least influential parameter. Using
empirical formulation eq. (6) enabled the value to be
updated in accordance with the stresses achieved at
load reversal. However, any misleading values may
have been compensated by other parameters such as
K, vande.

Poisson’s ratio v controls elastic compressibility.
When it was decreased to 0.25 it should have
represented drained behaviour, and when increased to
0.45 undrained behaviour was supposed (Figs. 6e and
6f). Its decrease and increase showed an increasing or
decreasing amount of displacement respectively.

¢ and y showed just the opposite effect of v. So, they
could be compensated by v.. They define the failure
stress, so when they decreased, displacements
increased, and when they increased, displacements
decreased (Figs. 6g). Fig. 6h interestingly shows the
operational equivalence of ¢ and y with v. K, and v
also presents similar behaviour.

Fig. 6e and 6j shows how e, I, and U, control the
degradation parameters of the modified hyperbolic
model; %, » and a affect the pressure-displacement
curve. Although e, I;, and U, have an overall effect on
the curve, they affect the small strain range, and
especially the size and inclination of the loops. Fig. 6j
and 6k demonstrate how loop shape is affected by the
degradation of the shear modulus G.

If unrepresentative values for e, I, and U, are selected,
as seen in Fig. 6k, it is impossible to compensate them
with other parameters. In Fig. 6k, it is demonstrated
that it is possible to capture the expansion curves well
enough; however, the loops are the key factor in
calibrating a model and these are now seen to be
inadequate. It should be noted that ¢=54° and y=29°
as given in Fig. 6k were calculated by using Hughes
et al (1977) for this test curve. But, when the loops are
considered, both ¢ and i should be decreased by 10°
for optimum overall fit. This result suggests that the
low-stress plane strain values of ¢ and y obtained by
using Hughes et al (1977) were inappropriate.

e Three different solutions (best fit Fig. 5, Fig. 6h and
Fig. 61) are presented to show that soils can be defined
with different combinations of parameters. There are
at least 3 ways to successfully simulate this test.
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Figure 6. Parameter effect on the presuremeter curve and some examples of parameter combinations (Test: B431-T2)




4. CONCLUSIONS

Utilization of a newly developed modified hyperbolic
model with the Mohr-Coulomb yield criterion in
FLAC3D provides a practical and successful
methodology for modelling sands, especially in the
small strain range. The model also proved itself for
incorporation into numerical analyses.

A SBP test with at least two loops is necessary to
implement the proposed approach. In that way, it is
easier and more accurate to capture the location of loops,
their size, and inclination. The parameters affect the
pressuremeter curve in different ways. K, affects the
whole pressuremeter test curve, including the size of
loops. G, has a limited affect on the first expansion
curve; however, updating it at loops is most important.
Poisson’s ratio v has a significant impact, similar to ¢
and w but in a reverse sense. So they appear to be
interchangeable parameters. e, I, and U, control z, .
and a which have an overall effect. They especially
affect the size and inclination of the unload-reload loops.

It is demonstrated that the degradation of shear modulus
is of crucial importance to the simulation of a
pressuremeter test. This concept can be extended to the
design of geotechnical structures which will be designed
for small to medium strains. Since the observed
behaviour in a pressuremeter test can be matched by the
proposed non-linear model, some confidence may be
felt in the use of this calibrated model to predict the
behaviour of full-scale geotechnical structures. However,
this paper also reveals that a pressuremeter test can be
successfully simulated with different combinations of
soil parameters. Extra soil test data would assist, as ever.
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